
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 312 (2008) 736–753

www.elsevier.com/locate/jsvi
Dynamic behavior of multi-span bridges
under moving loads with focusing on the effect of the coupling

conditions between spans

Hongan Xu, Wen L. Li�

Department of Mechanical Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202, USA

Received 27 March 2007; received in revised form 1 November 2007; accepted 7 November 2007

Available online 20 February 2008
Abstract

This study is concerned with the dynamic behavior of generic multi-span bridges under the action of moving loads. In

this multi-span bridge model, each span can be independently supported by up to eight elastic springs, thus allowing a

more general and realistic representation of many joints and intermediate supports of practical interest. Additionally, since

the displacement and its first derivative are no longer required to be continuous at an intermediate support or at the

junctions of spans, this model is capable of accounting for the possible steps and skew angles at these locations which are

important to studying the vehicle–bridge interactions. Numerical results are presented with a focus on the dynamic impact

of the coupling conditions between spans. It has been shown that the deflection on each span strongly depends upon its

local coupling conditions, especially near the critical stiffness values. A fairly large variance of response has also been

observed on each span in correspondence to a wide range of stiffness values, which implies a good potential for improving

bridge performance through modifying joint parameters or coupling configurations. This model can be readily applied to

any boundary and coupling conditions with no need of modifying the formulations or solution procedures.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic behavior of multi-span beams under moving loads has been extensively studied for many years
in connection with the design of railway tracks and bridges. Although a grid-based solution method may be
considered inconvenient in dealing with the problems involving moving loads, the finite element method is still
one of the most powerful numerical methods and used by many researchers [1–3]. Dynamic stiffness method is
another popular technique for the vibrations of beams subjected to moving loads [4–7]. Henchi and Fafard [4]
derived the frequencies and mode shapes of a uniform continuous beam by using the dynamic stiffness element
method under the framework of finite element approximation. Dugush and Eisenberger [7] presented a
solution for the multi-span non-uniform beams transversed by a load traveling at a constant or variable
velocity. The assumed mode method is also widely used to solve single- and multi-span beam problems [8–13].
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Ichikawa and Miyakawa [12] gave a solution for a uniform continuous beam under a concentrated load
moving at variable velocity. The solution was based on the mode superposition method and the final system
equations in the case of variable velocity were solved numerically using the central difference method. The
vibration of a multi-span non-uniform beam was studied in Refs. [13,14] using the modified beam vibration
functions as the assumed modes. Other commonly used methods include Laplace transformations [15–18], the
methods of Lagrange multipliers [19–21], the Green’s function methods [22–26], and so on.

In bridge design, elastic bearings are traditionally installed between bridge girders and the supporting
structures to reduce the seismic forces or vibrations transmitted from the ground. However, in studying the
dynamic responses of bridges to moving loads or vehicles, the end or intermediate supports have been mostly
assumed to be ideal or homogeneous, implying that an adequate number of force or displacement components
can be directly specified at these locations. Vibrations of bridges with elastic bearings were studied in
Refs. [27,28] where the vibration shape of the beam was expressed as the superposition of the first modal shape
of the flexural deflection of the beam with simple supports and the first modal shapes of a rigid beam
supported by the elastic springs. It is shown that the elastic supports can have a meaningful impact on the
dynamic response depending upon the vibration phases of the elastic bearings and the flexible beam [27]. The
effects of boundary flexibility on the vibration of a beam was also studied in Ref. [29] by using eigenfunction
expansion series, and it was found that the high-order modes would contribute significantly to the shear force
calculations in the elastically supported case.

Many of the aforementioned methods will require a varying degree of modifications or adaptations to
account for the variances in boundary conditions, intermediate supports, and/or the number of spans. For
instance, when the unconstrained beam functions are used as the assume mode shapes, one typically needs to
first determine the eigenfunctions for the given boundary conditions. This problem itself may become a
sizeable task if the beam is elastically restrained at either or both ends. In addition, the beam eigenfunctions
tend to become numerically unstable for large modal indexes, which demands special treatments in actual
calculations.

In most investigations, the terms ‘‘multi-span bridges’’ or ‘‘multi-span beams’’ typically refer to a
continuous beam with a number of intermediate supports. Although the beams may be allowed to have
different physical or geometrical properties for each span, the beam displacement and its first derivatives are
usually required to be continuous over the entire beam length. This condition can be easily violated when the
translational and rotational couplings between any two adjacent spans are not sufficiently strong to ensure a
smooth transition of the displacement and its derivative at the junction. Many modern structures such as
bridges, railway tracks, and pipelines are assembled from some fundamental building blocks through joints.
Thus, it is important to extend the definition of multi-span beam to include a beam system comprising a
number of beams co-linearly coupled together via rigid and non-rigid joints. Accordingly, at the junctions the
kinematic continuity requirements on the displacement functions will need to be replaced with the dynamic
equilibrium equations about the forces and moments.

A modified Fourier series method was recently developed for determining the vibrations of a single beam
with elastic boundary supports [30] and vibrations of two elastically coupled beams with/without an angle
[31,32]. In this investigation, we will study the dynamic response of a multi-span bridge to a moving load with
emphasizing on the effects of the between-span coupling conditions. Certain insightful information has been
gained through numerical simulations regarding how to effectively modify the dynamic behavior of a multi-
span bridge.

2. Description of the analysis method

Fig. 1 shows a multi-span bridge model which consists of any number of beams or spans coupled together
via joints represented by linear and rotational springs. The elastic springs between any two adjacent beams
allows considering the flexibility of some joints in practice such as bolts or point welds. The conventional rigid
connectors can be considered as a special case when the stiffnesses of these springs become substantially larger
than the bending rigidities of the beams. Each of beams may also be supported on a set of elastic restraints at
both ends. All the traditional intermediate supports and homogeneous boundary conditions (i.e., the
combinations of the simply supported, free, guided and clamped end conditions) can be readily obtained from
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Fig. 1. A multi-span bridge subjected to a concentrated moving load.
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these general boundary conditions by accordingly setting the stiffness constants of the restraining springs to
equal to zero or infinity.

The differential equation for the vibration of the ith beam is well known as

Diq
4wiðx; tÞ=qx4 � riAiq

2wiðx; tÞ=qt2 ¼
XJ

j¼1

Fjd x� x
f
j;iðtÞ

� �
ði ¼ 1; 2; . . . ;NÞ, (1)

where wi(x,t), Di, ri, and Si are, respectively, the flexural displacement, the bending rigidity, the mass density
and the cross-sectional area of ith beam; o is angular frequency and x represents the local coordinate starting
from the left end of the ith span; and J is the number of loads acting on the ith beam at t moment, Fj is the
magnitude of the jth load, d is the Dirac delta function, and x

f
j;iðtÞ is the jth load position measured from the

left end of the ith beam. Sometimes, unit step functions are used in Eq. (1) to explicitly specify whether a
moving load is present to a span or not. For simplicity, they are not included in Eq. (1) since the load position
described in terms of the delta function has already contained this information, i.e., the jth load is not present
to the ith beam if x

f
j;iðtÞ4Li or o0.

When a single load travels along a beam, the dynamic response can be treated as having two parts: the
forced vibration caused by the load directly acting on the beam, and the residual free vibration caused by the
load that has passed the beam [28]. As a consequence, phenomena of resonance and cancellation may occur
when a bridge is under the action of multiple loads [27,28]. Therefore, the loading conditions (e.g., the number
of loads and their traveling speeds) are of critical importance to a bridge design. From mathematical point of
view, however, Eq. (1) simply represents a linear system whose response to multiple loads can be actually
considered as the superposition of its responses to each individual load. Thus, only one moving force will be
explicitly considered in this study since our primary objective is to examine if and how the coupling conditions
between spans can affect the bridge vibration.

The load profile is defined by €xf ðtÞ ¼ a ¼ const:; _xf ðtÞ ¼ v ¼ v0 þ at and xf ðtÞ ¼ v0tþ at2=2; where xf(t) is
the load position measured from the left end of the first beam, a is the acceleration of the moving load, v ¼ v(t)
is its velocity, and v0 is the initial velocity at time t ¼ 0 when the load is just about to enter the first beam.

The boundary and coupling conditions for the ith beam can be expressed in the following manner:
At x ¼ 0,

ki;i�1ðwið0; tÞ � wi�1ðLi�1; tÞÞ þ ~ki0wið0; tÞ ¼ �Diw
000
i ð0; tÞ, (2)

Ki;i�1ðw
0
ið0; tÞ � w0i�1ðLi�1; tÞÞ þ ~Ki0w0ið0; tÞ ¼ Diw

00
i ð0; tÞ. (3)
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At x ¼ Li,

ki;iþ1ðwiðLi; tÞ � wiþ1ð0; tÞÞ þ ~ki1wiðLi; tÞ ¼ Diw
000
i ðLi; tÞ, (4)

Ki;iþ1ðw
0
iðLi; tÞ � w0iþ1ð0; tÞÞ þ ~Ki1w

0
iðLi; tÞ ¼ �Diw

00
i ðLi; tÞ. (5)

At the left end (of the first beam),

~k10w1ð0; tÞ ¼ �D1w
000
1 ð0; tÞ, (6)

~K10w01ð0; tÞ ¼ D1w001ð0; tÞ. (7)

At the right end (of the Nth beam),

~kN1wN ðLN ; tÞ ¼ DNw000NðLN ; tÞ, (8)

~KN1w
0
N ðLN ; tÞ ¼ �DNw00NðLN ; tÞ, (9)

where refer to Fig. 1, ki,j and Ki,j denote the stiffnesses of the linear and rotational springs at the junction of
beams i and j, respectively; ~ki;0; ~ki;1 are the stiffnesses of linear springs, and ~Ki;0; ~Ki;1 the stiffnesses of the
rotational springs at the left and right ends of beam i, respectively.

All the conventional (homogeneous) beam boundary conditions can be considered as the special cases of
Eqs. (6)–(9). For example, the simply supported end condition is easily modeled by simply setting the
stiffnesses of the translational and rotational springs to be infinity and zero, respectively.

On each beam, the displacement will be sought in the form of

wiðx; tÞ ¼
X1
m¼0

Ai;mðtÞ cos li;mxþ piðx; tÞ; 0pxpLi li;m ¼
mp
Li

� �
, (10)

where Li is the length of ith beam.
In Eq. (10), an auxiliary function pi(x) was introduced to improve the accuracy and convergence of the series

expansion at the end points, x ¼ 0 and Li. It is specifically required to satisfy the following conditions:

p000i ð0; tÞ ¼ w000i ð0; tÞ ¼ ai0, (11)

p000i ðLi; tÞ ¼ w000i ðLi; tÞ ¼ ai1, (12)

p0ið0; tÞ ¼ w0ið0; tÞ ¼ bi0, (13)

p0iðLi; tÞ ¼ w0iðLi; tÞ ¼ bi1. (14)

The benefits for using such an auxiliary function were adequately discussed before in Ref. [30] and will not
be further elaborated here. Theoretically, the auxiliary function pi(x) can be any continuous closed-form
function defined over [0, Li]. As an example, the auxiliary function pi(x) will be here selected as a polynomial:

pi ¼ ziðxÞ
Tai, (15)

where

ai ¼ fai0; ai1;bi0; bi1g
T (16)

and

ziðxÞ
T
¼

�ð15x4 � 60Lix
3 þ 60L2

i x2 � 8L4
i Þ=360Li

ð15x4 � 30L2
i x2 þ 7L4

i Þ=360Li

ð6Lix� 2L2
i � 3x2Þ=6Li

ð3x2 � L2
i Þ=6Li

8>>>><>>>>:

9>>>>=>>>>;. (17)
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It should be pointed out that although the same symbol is used, the x-coordinate in Eq. (17) actually
represents a local coordinate system with its origin at the left end of each beam. However, the use of different
local coordinate systems is simply for the sake of mathematical convenience.

At this point, the auxiliary function is fully defined in terms of four unknown boundary constants, ai ¼ {ai0,
ai1, bi0, bi1}

T. In what follows, these unknowns will be determined as the functions of the Fourier coefficients.
Substituting Eqs. (10)–(17) into (2)–(9) leads to

ki;i�1

X1
m¼0

ð�1ÞmAi�1;mðtÞ �
7L3

i�1ai�1;0

360
�

8L3
i�1ai�1;1

360
þ

bi�1;0Li�1

6
þ

bi�1;1Li�1

3

 !

¼ Diai;0 þ ðki;i�1 þ
~ki0Þ

X1
m¼0

Ai;mðtÞ þ
8L3

i ai;0

360
þ

7L3
i ai;1

360
�

bi;0Li

3
�

bi;1Li

6

 !
, ð18Þ

ðKi;i�1 þ ~Ki0Þbi;0 ¼ Ki;i�1bi�1;1 þDi �
X1
m¼1

l2i;mAi;mðtÞ �
ai;0Li

3
�

ai;1Li

6
þ

bi;1

Li

�
bi;0

Li

 !
, (19)

ðki;iþ1 þ
~ki1Þ

X1
m¼0

ð�1ÞmAi;mðtÞ �
7L3

i ai;0

360
�

8L3
i ai;1

360
þ

bi;0Li

6
þ

bi;1Li

3

 !

¼ Diai;1 þ ki;iþ1

X1
m¼0

Aiþ1;mðtÞ þ
8L3

iþ1aiþ1;0

360
þ

7L3
iþ1aiþ1;1

360
�

biþ1;0Liþ1

3
�

biþ1;1Liþ1

6

 !
, ð20Þ

ðKi;iþ1 þ ~Ki1Þbi;1 ¼ Ki;iþ1biþ1;0 �Di

X1
m¼1

ð�1Þmþ1l2i;mAi;mðtÞ þ
ai;0Li

6
þ

ai;1Li

3
þ

bi;1

Li

�
bi;0

Li

 !
. (21)

In matrix form, the above equations can be reduced to

Hi;i�1ai�1 þHi;iai þHi;iþ1aiþ1 ¼
X1
m¼0

Qm
i;i�1Ai�1;mðtÞ þQm

i;iAi;mðtÞ þQm
i;iþ1Aiþ1;mðtÞ

� �
: (22)

The definition of matrix Hi,i�1, Hi,j, Hi,i+1 and vectors Qm
i;i�1;Q

m
i;i;Q

m
i;iþ1 can be found in Ref. [33]. Eq. (22)

contains four linear algebraic equations that relate the 12 boundary unknowns to the Fourier expansion
coefficients. To determine the boundary unknowns, one has to apply Eq. (22), in turn, to each beam, resulting
in a total of 4N equations [33]:

Hā ¼
X1
m¼0

Q
m
Am or ā ¼

X1
m¼0

eHQ
m
Am. (23)

Making use of Eqs. (15) and (23), Eq. (10) can be expressed as

wiðx; tÞ ¼
X1
m¼0

Ai;mðtÞðcos li;mxþ ziðxÞ
T ~HiQ̄

m

i Þ þ
X
j¼1;N

jai

X1
m¼0

Aj;mðtÞzjðxÞ
T ~HiQ̄

m

j . (24)

It should be noted that the boundary and coupling conditions, Eqs. (2)–(9), have been explicitly used in
establishing the relationship between the boundary constants (in the polynomials) and the Fourier expansion
coefficients. Thus, the Fourier coefficients are now only required to satisfy the governing differential equation.

Substituting Eq. (24) into Eq. (1) and following the standard Galerkin procedure, one is able to obtain

½Kij �fAjg þ ½Mij�f €Ajg ¼ fFig ði; j ¼ 1; 2; 3; . . . ;NÞ, (25)

where

Kij;mm0 ¼ dijð1� d0mÞð1� d0m0 Þðdmm0 þ S
ij
i;m0mÞl

4
im0 þ dijd0m0dm0S

ij
i;00 þ ð1� dijÞdm0S

ij
i;0m0 , (26)
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Mij;mm0 ¼ dijð1� d0mÞð1� d0m0 Þðdmm0 þ S
ij
i;mm0 þ S

ij
i;m0m þ Z

ij
i;mm0 Þ

þ dijd0m0dm0ð2þ Z
ij
i;00Þ þ dijd0m0 ðS

ij
i;m0 þ Z

ij
i;m0Þ þ dijdm0ðS

ij
i;m00 þ Z

ij
i;m00Þ

þ ð1� dijÞð1� d0mÞðS
ij
i;mm0 þ Z

ij
i;mm0 Þ þ ð1� dijÞdm0Z

ij
i;0m0 ð27Þ

and

f i;m ¼ 2=Li

Z Li

0

cos limxþ ziðxÞ
T ~HiQ̄

m

i

� �
F 1 x� x

f
1;iðtÞ

� �
dx

for m;m0 ¼ 0; 1; 2; 3; . . . ; and i; j ¼ 1; 2; 3; . . . ;N. ð28Þ

The readers should refer to Ref. [33] for the definitions of matrices S
ij
i;mm0 and Z

ij
i;mm0 in the above equations.

Eq. (25) represents a set of coupled second-order differential equations with respect to time which can be
solved by direct numerical integration. In this study, the Newmark-b algorithm is used to perform the
numerical integration.
3. Results and discussions

In order to validate the current model and analysis code, we will first consider a multi-span beam problem
that was previously studied in Ref. [4]. As illustrated in Fig. 2, this example involves a three-span stepped
beam subjected to a single concentrated moving load. The relevant beam and material parameters are listed in
Table 1. Under the current framework, this stepped continuous beam can be viewed as a collection of three
separate beams that are rigidly coupled together. The continuous beam is assumed to be simply supported at
its ends and at the two joint locations. The simply supported condition can be readily modeled by simply
setting the stiffnesses of the (linear and rotational) coupling springs equal to infinity and zero, respectively.
In all the following calculations, the Fourier series for each beam is numerically truncated to include only
first 10 terms.

The calculated natural frequencies for the first six modes are compared in Table 2 with those previously
given in Ref. [4]. The mode shapes of first three modes are plotted in Fig. 3. Now, assume the beam is
subjected to a point load, F ¼ 9.48� 103N, moving at a constant speed v ¼ 35.57m/s. Plotted in Fig. 4 are the
v
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Fig. 2. A three-span beam with non-uniform cross-section under a moving load.

Table 1

Beam and material properties

Parameters Values

L (m) 20

r (kg/m3) 7800

rA (kg/m) 1000

EI (Nm2) 1.96� 109

E (N/m2) 10.48� 1010

F (N) 9.48� 103
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Table 2

Comparison of natural frequencies

Mode Current method (Hz) Results from Ref. [4] (Hz)

1 6.195 6.204

2 7.579 7.581

3 11.795 11.974

4 24.095 24.207

5 26.365 26.439

6 37.561 37.282
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Fig. 3. Mode shapes for the first three modes of the three-span beam: (—) first, (- - -) second and (- � -) third.
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corresponding deflections at the midpoint locations of all three spans. The results obtained by Henchi
and Fafard [4] are also shown there for comparison. An excellent agreement is observed between these
two sets of solutions. This problem was also studied by Dugush and Eisenberger [7] for different beam
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parameters and load profiles. It suffices to say that the current results also match closely with those given in
Ref. [7].

Before proceeding to examination of the elastic couplings between spans, we will first consider a
modified version of the above problem which involves a single uniform beam elastically supported at
its ends. This kind of problems was previously investigated in Refs. [27–29]. For convenience, all the related
parameters will remain the same except that the bending stiffness for the mid-span is reduced to EI,
same as the other spans to achieve the uniformity required for a single-span beam. It should be mentioned that
the two intermediate supports are also removed. Thus, we now deal with a uniform beam of length 3L

elastically supported, at each end, by a linear spring of stiffness, say, k ¼ 1010N/m. The deflections at the
center of the beam are plotted in Fig. 5 for two different load speeds. The results obtained using the solution
given by Yang et al. [27] are also presented there. A good comparison is observed between these two sets
of results.

In a traditional multi-span beam problem, the beam displacement and its first derivative are both required
to be continuous over the entire beam length. In many real-world applications, regardless of whether
purposely or not, the joints between different spans may not always be modeled as being infinitely rigid. Thus,
joint stiffnesses, or coupling conditions between spans, will actually constitute an additional set of model
parameters, and may meaningfully affect the bridge vibration. While the roles of beam parameters and/or
loading conditions have been extensively studied, the effect of the between-span coupling conditions on the
dynamic behavior of a bridge was barely attempted before. Thus, the subsequent discussions will be primarily
focused on the effect of the coupling conditions.

As illustrated in Fig. 2, there are up to eight independent springs associated with each span in a general
support/coupling configuration. Theoretically, each of these springs can be considered as an independent
design variable, which makes it a formidable task to study a general case involving an arbitrary combination
of these variables. For simplicity, we will again consider the three-span beam problem with only one
modification: the continuity requirement for the first derivative is relaxed at the junctions of the spans. That is,
two rotational springs, K1,2 ¼ K2,3 ¼ K, of equal stiffness are now placed between the spans while the
displacement is still assumed to be continuous over the entire length. Three different arrangements are
considered: (1) spans 1 and 2 are elastically connected via a rotational spring while spans 2 and 3 are rigidly
coupled together (ER); (2) spans 2 and 3 are elastically connected while spans 1 and 2 are rigidly coupled
together (RE); and (3) all three spans are elastically coupled together (EE). In all these cases, the rotational
stiffness will vary from 106 to 1010Nm/rad.
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The peak–peak value (the algebraic difference between the extremes of the deflection) at the midpoint of each
span is utilized to evaluate the dynamic behavior of the beam system. Figs. 6–8 show the peak–peak values vs. the
stiffness of the coupling springs for a few different load profiles. It is seen that as the stiffness increases, the
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Fig. 7. Peak–peak deflection at the midpoint of the second span for a few load profiles defined by a constant acceleration a ¼ 2m/s2

and different initial velocities: (a) elastic–elastic; (b) elastic–rigid; and (c) rigid–elastic. (—) v ¼ 5m/s, ( � � � � � ) v ¼ 17.87m/s, (- � -)

v ¼ 35.57m/s, and (- - -) v ¼ 71.25m/s.
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Fig. 8. Peak–peak deflection at the midpoint of the third span for a few load profiles defined by a constant acceleration a ¼ 2m/s2

and different initial velocities: (a) elastic–elastic; (b) elastic–rigid; and (c) rigid–elastic. (—) v ¼ 5m/s; ( � � � � � ) v ¼ 17.87m/s; (- � -)
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Fig. 9. Peak–peak deflection at the midpoint of the first span for a constant acceleration a ¼ 2m/s2: (a) v ¼ 17.87m/s; (b) v ¼ 35.57m/s;
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deflection at the midpoint of each span typically decreases until Kffi108 (or KL/EIffi1). The dynamic responses
tend to exhibit a strong dependence on the coupling stiffness near this ‘‘critical’’ value. The peak–peak values
typically increases with the traveling speed of the load for a given coupling stiffness and configuration.
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Fig. 10. Peak–peak deflection at the midpoint of the second span for a constant acceleration a ¼ 2m/s2: (a) v ¼ 17.87m/s; (b) v ¼ 35.57m/s;

and (c) v ¼ 71.25m/s. (—) Elastic–elastic; (- - -) elastic–rigid; and (- � -) rigid–elastic.



ARTICLE IN PRESS
H. Xu, W.L. Li / Journal of Sound and Vibration 312 (2008) 736–753 749
To better understand the effect of coupling conditions, the results in Figs. 6–8 are re-plotted in
Figs. 9–11 based on the coupling configurations. It is observed that the deflections on span 1 are
almost the same for the EE and ER configurations. A possible explanation is that the peak deflections
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Fig. 11. Peak–peak deflection at the midpoint of the third span for a constant acceleration a ¼ 2m/s2: (a) v ¼ 17.87m/s; (b) v ¼ 35.57m/s;
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occur when the load is still located on the first span. Since the time elapsed to reach this stage is
relatively short, the wavefront may not yet have arrived at or bounced back from the junction (between spans
2 and 3) which differentiates the EE and ER configurations. As a consequence, the initial response of
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(b) span 2; and (c) span 3. ( ) Elastic–elastic; ( ) rigid–elastic; and ( ) elastic–rigid.



ARTICLE IN PRESS
H. Xu, W.L. Li / Journal of Sound and Vibration 312 (2008) 736–753 751
span 1 is primarily dictated by the local end conditions which are essentially the same in both configurations.
A similar comparison can be made between the EE and RE configurations regarding the deflections on span 3
for Kp107. As the spring stiffness becomes sufficiently large, all the three configurations will essentially
0 10 20 30 40 50 60 70 80
108

109

1010

R
o

ta
ti
o

n
a

l 
S

ti
ff

n
e

s
s
 (

N
.m

/s
)

108

109

1010

R
o

ta
ti
o

n
a

l 
S

ti
ff

n
e

s
s
 (

N
.m

/s
)

0 10 20 30 40 50 60 70 80

0 10 20 30 40 50 60 70 80
106

107

108

109

1010

Velocity (m/s)

R
o

ta
ti
o

n
a

l 
S

ti
ff

n
e

s
s
 (

N
.m

/s
)

(a)

(b)

(c)
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degenerate into a continuous multi-span beam, and the responses tend to become the same as repeatedly
shown in Figs. 9–11.

The above results have consistently indicated that the dynamic behavior of a multi-span bridge
may become strongly dependent upon the coupling conditions between spans. Since in practice
the stiffness values can vary easily by several orders of magnitude, their impact on the dynamic
behavior will be better assessed in terms of the variance ratio, as plotted in Fig. 12. The variance
ratio is defined as the deference between the maximum and minimum peak–peak deflections (normalized by
the maximum) for all the given stiffness values. A larger variance ratio indicates a more significant
influence of the coupling conditions on the dynamic behavior of the bridge. It is evident from Fig. 12
that the deflections or the dynamic behavior of a bridge can be substantially influenced by the coupling
conditions.

In terms of bridge design, a large variance ratio implies certain room for improving bridge performance
through varying or optimizing the coupling conditions between spans. For example, a set of preferred joint
stiffnesses (corresponding to the minimum peak–peak deflection) are shown in Fig. 13 for the specified load
speeds. It is clear that the rigid coupling does not always result in the smallest deflection, as one may intuitively
believe. It should be pointed out that these optimal stiffness values were actually determined based on the local
vibration data and vary from span to span. In practice, one may have to first define a global objective or cost
function so that a unique set of optimal joint parameters can be found accordingly. Since the coupling
conditions, unlike many other structural parameters, can be modified in a more drastic and cost-effective
manner, they have potential to become an important design option for a significant improvement of bridge
performance.
4. Conclusions

The vibration of a multi-span bridge subjected to a moving load has been investigated in a generic
manner. Unlike in most previous multi-span bridge models, the displacement and its derivative are not
here required to be continuous at the intermediate supports or any other locations. In other words, the
joints between spans can be considered as the design variables and optimized to achieve desired performance.
In essence, the current model is a more general representation of multi-span bridges in that each span
can be independently supported and arbitrarily coupled to its neighbors via a set of joints of any stiffness
values.

Since the traditional beam and material parameters have been extensively studied and well understood
regarding their effect on the bridge vibration, this investigation is specifically focused on a set of rarely
attempted model variables: the coupling conditions between spans. It has been demonstrated through
numerical examples that the coupling conditions will generally have a direct and meaningful impact on the
vibration on each span. In particular, the peak–peak deflection on a span is strongly dependent upon the
coupling conditions local to that span, and less sensitive to the coupling conditions at distant junctions. For a
given coupling arrangement, the peak–peak deflection on each span typically increases with the traveling speed
of a load. In comparison with many other design variables, a coupling stiffness can be practically varied easily
by several orders of magnitude. It is found, however, that the dynamic behavior becomes particularly sensitive
to the coupling conditions near the critical stiffness value defined by KL/EIffi1. Thus, the large design space
may be practically compressed into a much smaller one. Finally, a large variance ratio for the deflection on
each span shall be understood as a good potential for improving bridge design through optimizing the
coupling conditions between spans. In the current model, there are up to eight independent (supporting and
coupling) springs associated with each span. While this model generalization may appear to complicate a
design task, it actually opens more avenues for significantly improving or modifying the dynamic behavior of a
multi-span bridge.
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